National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Electrospinning of polyvinylidenfluoride based fibers
Hošek, František ; Šťastný, Přemysl (referee) ; Částková, Klára (advisor)
Electrospinning is one of the rapidly developing methods for obtaining fibers of very small thickness. There is a wide-scale use of nanofibers, and it has a great potential in many fields, such as in medicine, biology, chemistry, electronics, environmental protection, energy-harvesting, and other. Polyvinylidene fluoride (PVDF) appears to be a promising material for fiber production for its excellent mechanical and chemical properties. It is a chemically inert substance, very resistant to thermal stress. The aim of this bachelor thesis is the preparation of PVDF fibers by electrospinning and the study of the influence of three different surfactants on the spinnability of PVDF, on the arrangement and the shape of fibers which are formed during electrospinning. The effect of surfactant concentration (1 wt%; 0.5 wt%; 0.25 wt%) on the spinning process at electrical voltages of 25 kV and 50 kV was studied. The theoretical part describes the properties and the division of polymers and looks at polyvinylidene fluoride (PVDF) as a source material in more detail. Furthermore, the electrospinning method is described, including process conditions and external parameters influencing the process of obtaining fibers. The experimental part describes the preparation of samples by electrospinning and their characterization. Fiber thickness, its appearance, arrangement, and the occurrence of defects when using individual surfactants were evaluated. It was found that the used ionic surfactants affect the thickness of the fibers and their morphology. Homogeneous fibers with a predominant arrangement in one direction, without defects, were obtained.
Study on kinetic stability of suspension with magnetorheological properties
Vlachová, Kristýna ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
Sedimentation in magnetorheological (MR) fluids is undesirable for many technological applications. For this reason, several ways have been proposed to prevent sedimentation instability. This thesis deals specifically with the addition of a suitable additive. The topic was examined based on available literature and according to it was suggested a procedure for the experimental part. Two types of MR liquids with different composition and preparation method were prepared. The first suspensions included a water-in-oil emulsion as a carrier liquid and Span 80 and Tween 80 as additives. For the second MR fluids, the continuous phase was a blend of bearing oils and the suspension was stabilized with organoclay. In both cases, carbonyl iron particles with a diameter of 1,8–2,3 µm were used. The kinetic stability of the prepared MR fluids was monitored and compared using an analytical centrifuge.
Key factors of selected tensides used for full notch creep test of high density polyethylene
Křivánková, Eliška ; Poláček, Petr (referee) ; Bálková, Radka (advisor)
The thesis deals with the study of surface-active properties, zeta potential, particle size and adhesion of surfactants (Arkopal N110, Igepal CO-520, Igepal CO-890, Dehyton PL, sodium dodecyl sulfate and dodecyltrimethylammonium bromide) selected for full notch creep test method. To determine the surface phenomena occuring in a solution due to their presence at 25, 50 and 80 °C, the Du Noüy ring method of surface tension measurement was used. The importance of factors such as concentration, ionic character and the molecular structure of the surfactants, temperature and dispersion media (pH, purity) were analysed. Dynamic light scattering measurements were performed in order to evaluate the particle size and the electrophoresis method was used to determine the zeta potential. The results were compared to the contact angle measurements, i. e. adhesion tendency between surfactant solutions and the surface of selected types of high density polyethylene. The optical analysis was used to evaluate the contact angle. The negative impact of water purity was negated. The temperature dependecy was specific for each of the examined surfactant species, however the relationship between temperature and the length of hydrophilic chain was discovered. Alkaline pH was less convenient for amphoteric surfactant than acid or neutral environment, but this might have been caused by components contained in the buffer. The character of surfactant solutions was mostly monodisperse. The only exceptions were 1mM Igepal CO-520 and 3mM Dehyton PL. Further investigation led to conclusion that the molecules tend to form agglomerates. Adhesion was in accordance with surfactant effectiveness of surface reduction and adsorption. However, this theory did not match the data obtained from testing acid and neutral Dehyton PL solutions' adhering to polyethylene species containing carbon black.
Selection of suitable additives to improve the sedimentation stability of magnetorheological fluids
Vlachová, Kristýna ; Smilková, Marcela (referee) ; Smilek, Jiří (advisor)
This thesis deals with preparation of a sedimentation stable magnetorheological (MR) fluid with the use of suitable additives. Based on literary research, the first part describes general properties of this suspension, other options for its stabilization and its use in practice. In terms of the above literature research, preparation of a MR fluid with increased stability is proposed in the experimental part. Sedimentation stability was evaluated both by a device using magnetic flux density and by an analytical centrifuge.
Electrospinning of polyvinylidenfluoride based fibers
Hošek, František ; Šťastný, Přemysl (referee) ; Částková, Klára (advisor)
Electrospinning is one of the rapidly developing methods for obtaining fibers of very small thickness. There is a wide-scale use of nanofibers, and it has a great potential in many fields, such as in medicine, biology, chemistry, electronics, environmental protection, energy-harvesting, and other. Polyvinylidene fluoride (PVDF) appears to be a promising material for fiber production for its excellent mechanical and chemical properties. It is a chemically inert substance, very resistant to thermal stress. The aim of this bachelor thesis is the preparation of PVDF fibers by electrospinning and the study of the influence of three different surfactants on the spinnability of PVDF, on the arrangement and the shape of fibers which are formed during electrospinning. The effect of surfactant concentration (1 wt%; 0.5 wt%; 0.25 wt%) on the spinning process at electrical voltages of 25 kV and 50 kV was studied. The theoretical part describes the properties and the division of polymers and looks at polyvinylidene fluoride (PVDF) as a source material in more detail. Furthermore, the electrospinning method is described, including process conditions and external parameters influencing the process of obtaining fibers. The experimental part describes the preparation of samples by electrospinning and their characterization. Fiber thickness, its appearance, arrangement, and the occurrence of defects when using individual surfactants were evaluated. It was found that the used ionic surfactants affect the thickness of the fibers and their morphology. Homogeneous fibers with a predominant arrangement in one direction, without defects, were obtained.
Key factors of selected tensides used for full notch creep test of high density polyethylene
Křivánková, Eliška ; Poláček, Petr (referee) ; Bálková, Radka (advisor)
The thesis deals with the study of surface-active properties, zeta potential, particle size and adhesion of surfactants (Arkopal N110, Igepal CO-520, Igepal CO-890, Dehyton PL, sodium dodecyl sulfate and dodecyltrimethylammonium bromide) selected for full notch creep test method. To determine the surface phenomena occuring in a solution due to their presence at 25, 50 and 80 °C, the Du Noüy ring method of surface tension measurement was used. The importance of factors such as concentration, ionic character and the molecular structure of the surfactants, temperature and dispersion media (pH, purity) were analysed. Dynamic light scattering measurements were performed in order to evaluate the particle size and the electrophoresis method was used to determine the zeta potential. The results were compared to the contact angle measurements, i. e. adhesion tendency between surfactant solutions and the surface of selected types of high density polyethylene. The optical analysis was used to evaluate the contact angle. The negative impact of water purity was negated. The temperature dependecy was specific for each of the examined surfactant species, however the relationship between temperature and the length of hydrophilic chain was discovered. Alkaline pH was less convenient for amphoteric surfactant than acid or neutral environment, but this might have been caused by components contained in the buffer. The character of surfactant solutions was mostly monodisperse. The only exceptions were 1mM Igepal CO-520 and 3mM Dehyton PL. Further investigation led to conclusion that the molecules tend to form agglomerates. Adhesion was in accordance with surfactant effectiveness of surface reduction and adsorption. However, this theory did not match the data obtained from testing acid and neutral Dehyton PL solutions' adhering to polyethylene species containing carbon black.
Study on kinetic stability of suspension with magnetorheological properties
Vlachová, Kristýna ; Kráčalík, Milan (referee) ; Smilek, Jiří (advisor)
Sedimentation in magnetorheological (MR) fluids is undesirable for many technological applications. For this reason, several ways have been proposed to prevent sedimentation instability. This thesis deals specifically with the addition of a suitable additive. The topic was examined based on available literature and according to it was suggested a procedure for the experimental part. Two types of MR liquids with different composition and preparation method were prepared. The first suspensions included a water-in-oil emulsion as a carrier liquid and Span 80 and Tween 80 as additives. For the second MR fluids, the continuous phase was a blend of bearing oils and the suspension was stabilized with organoclay. In both cases, carbonyl iron particles with a diameter of 1,8–2,3 µm were used. The kinetic stability of the prepared MR fluids was monitored and compared using an analytical centrifuge.
Selection of suitable additives to improve the sedimentation stability of magnetorheological fluids
Vlachová, Kristýna ; Smilková, Marcela (referee) ; Smilek, Jiří (advisor)
This thesis deals with preparation of a sedimentation stable magnetorheological (MR) fluid with the use of suitable additives. Based on literary research, the first part describes general properties of this suspension, other options for its stabilization and its use in practice. In terms of the above literature research, preparation of a MR fluid with increased stability is proposed in the experimental part. Sedimentation stability was evaluated both by a device using magnetic flux density and by an analytical centrifuge.
Study of the performance of microbial MDR pumps by fluorescent probes: effect of potential inhibitors
Kodedová, Marie ; Gášková, Dana (advisor) ; Höfer, Milan (referee) ; Sychrová, Hana (referee)
The current increased use of antifungal agents has resulted in the development of resistance to these drugs. Search for new antifungals with different mechanisms of action overcoming the multidrug resistance is thus underway. Surface-active antifungals have the advantages of minimizing host toxicity and the emergence of drug resistance. We have developed a fluorescence method based on the use of the potentiometric fluorescent probe diS-C3(3), substrate of two major S. cerevisiae MDR pumps, Pdr5p and Snq2p. It allows us to monitor with high sensitivity and in real time changes in the activities of both pumps and also in membrane potential. We present here an efficient strategy for identifying pump inhibitors with minimal side effects on membrane integrity, and compare the potencies of different inhibitors towards MDR pumps. New efficient inhibitors of MDR pumps could potentially be used in conjunction with current antimicrobials that are MDR pump substrates. The method can be also used to determine the mechanism of action of surface-active drugs and their lowest effective concentrations.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.